·常規(guī)信息  最近更新:2024年2月5日 8:15:00
                基因(座)名稱Squamosa啟動(dòng)子結(jié)合蛋白; 理想株型基因
                squamosa promoter binding protein-like 14; Ideal Plant Architectutre1
                基因符號(hào)OsSPL14; IPA1;WFP
                所在染色體8 (已克。

                IPA1/OsSPL14(LOC_Os08g39890, Jiao et al. 2010)...

                miR-156–IPA1確定為生長(zhǎng)和防衛(wèi)之間的新調(diào)節(jié)因子,并建立了獲得高抗病性和高產(chǎn)量的新策略(Liu et al. 2019)。

                IPA1在正常條件下促進(jìn)生長(zhǎng)發(fā)育,而在稻瘟病菌侵染時(shí)受誘導(dǎo)磷酸化提高免疫反應(yīng)(右圖),這一機(jī)制既能增加水稻產(chǎn)量又能提高稻瘟病抗性,打破了單個(gè)基因不可能同時(shí)實(shí)現(xiàn)增產(chǎn)和抗病的傳統(tǒng)觀點(diǎn),為高產(chǎn)高抗育種提供了重要理論基礎(chǔ)和實(shí)際應(yīng)用新途徑(Wang et al. 2018)。

                研究人員在甬優(yōu)12號(hào)中圖位克隆到一個(gè)主效QTL位點(diǎn)qWS8/ipa1-2D,經(jīng)鑒定,該QTL是理想株型基因IPA1上游的一段串聯(lián)重復(fù)序列。這一段重復(fù)序列可以抑制IPA1的DNA甲基化修飾,使得IPA1基因啟動(dòng)子區(qū)域的染色質(zhì)結(jié)構(gòu)處于松散的狀態(tài),從而促進(jìn)IPA1基因的表達(dá),產(chǎn)生發(fā)育水平上的理想株型和產(chǎn)量提升(Zhang et al. 2017)。

                SPL基因具有高度保守的DNA 結(jié)合域,作為植物特有的轉(zhuǎn)錄因子家族的代表,其參與開花時(shí)間的調(diào)節(jié)、時(shí)期轉(zhuǎn)換、葉發(fā)育的起始以及其他的發(fā)育過(guò)程。在水稻基因組中,有19個(gè)SPL 基因,其中OsSPL14 與擬南芥的SPL9 最相似。OsSPL14 定位于細(xì)胞核,始終起著轉(zhuǎn)錄因子的作用。在營(yíng)養(yǎng)生長(zhǎng)和生殖生長(zhǎng)階段,OsSPL14 始終在生長(zhǎng)錐優(yōu)勢(shì)表達(dá),在一二次枝梗也高度表達(dá)(Jiao et al., 2010; Miura et al., 2010)。

                IPA1能與控制水稻分蘗側(cè)芽生長(zhǎng)的負(fù)調(diào)控因子OsTB1的啟動(dòng)子直接結(jié)合,抑制水稻分蘗發(fā)生,還通過(guò)直接正調(diào)控水稻株型重要基因DEP1,調(diào)節(jié)水稻株高和穗長(zhǎng)(Lu et al. 2013)。

                增加作物產(chǎn)量是現(xiàn)代農(nóng)業(yè)的主要目標(biāo)。為了使目前的高產(chǎn)水平得到進(jìn)一步提升,育種家提出了水稻理想株型的策略。對(duì)一個(gè)半顯性QTL-IPA1 進(jìn)行了克隆和特征分析,發(fā)現(xiàn)該QTL 可以很大程度上改變植株的形態(tài)進(jìn)而增加產(chǎn)量。IPA1 編碼類Squamosa啟動(dòng)子結(jié)合蛋白OsSPL14,并受微RNA OsmiR156 的調(diào)控。在營(yíng)養(yǎng)生長(zhǎng)期,OsSPL14 控制水稻分蘗;在生殖生長(zhǎng)期,OsSPL14 的高表達(dá)促進(jìn)了穗分支。研究表明OsSPL14 的一個(gè)點(diǎn)突變擾亂了OsmiR156 對(duì)OsSPL14 的調(diào)控,OsSPL14 突變后,使得水稻分蘗減少、穗粒數(shù)和千粒重增加,同時(shí)莖稈變得粗壯,抗倒伏能力增強(qiáng),進(jìn)而提高產(chǎn)量(Jiao et al., 2010; Miura et al., 2010)。

                D53在體內(nèi)外均與IPA1互作,抑制IPA1的轉(zhuǎn)錄激活活性。而IPA1可以直接結(jié)合到D53啟動(dòng)子上,并在獨(dú)腳金內(nèi)酯(SLs)誘導(dǎo)的D53表達(dá)的反饋調(diào)控中發(fā)揮關(guān)鍵作用。IPA1作為D53的下游直接調(diào)控元件,調(diào)控水稻分蘗數(shù)和SL誘導(dǎo)的基因表達(dá)(Song et al. 2017)。

                生長(zhǎng)素輸出載體OsPIN1bPILS6b參與生長(zhǎng)素應(yīng)答和水稻分蘗發(fā)育。轉(zhuǎn)錄因子OsSPL14能結(jié)合在OsPIN1bPILS6b啟動(dòng)子區(qū)域的GTAC順式作用元件上,激活它們表達(dá),從而通過(guò)調(diào)控生長(zhǎng)素運(yùn)輸和分布,調(diào)控水稻腋芽發(fā)育和生長(zhǎng)素應(yīng)答(Li et al. 2022)。

                馴化關(guān)鍵轉(zhuǎn)錄因子An-1能通過(guò)結(jié)合理想株型基因IPA表達(dá)調(diào)控區(qū)54 bp關(guān)鍵順式作用元件中的一個(gè)GCGCGTGT基序,特異調(diào)控IPA1在幼穗的表達(dá)水平,進(jìn)而特異調(diào)控穗部表型。IPA表達(dá)調(diào)控區(qū)這54個(gè)堿基的片段刪除,具有穗重和穗數(shù)同時(shí)增加、株高變高、莖稈和根系粗壯的表型(Song et al. 2022)。

                通過(guò)對(duì)IPA1功能缺失突變體ipa1-10和功能獲得型ipa1-3D的幼苗進(jìn)行鹽處理,發(fā)現(xiàn)IPA1負(fù)調(diào)控水稻的耐鹽性,鹽脅迫處理30分鐘后IPA1的磷酸化水平升高但蛋白水平降低。OsMPK4與IPA1蛋白互作,鹽脅迫下,OsMPK4被激活并磷酸化IPA1的Thr180位點(diǎn),從而促進(jìn)IPA1的泛素化降解,降低IPA1的蛋白水平并最終提高水稻耐鹽性(Jia et al. 2022)。

                冷脅迫下,OsSAPK6與IPA1蛋白互作,并在S201和S213位點(diǎn)對(duì)IPA1進(jìn)行磷酸化修飾,穩(wěn)定IPA1蛋白并使其積累,IPA1能直接結(jié)合OsCBF3啟動(dòng)子區(qū)的GTAC基序激活其表達(dá),增強(qiáng)水稻冷脅迫抗性。研究表明,IPA1 S213位點(diǎn)的磷酸化對(duì)于其耐冷表型有關(guān)鍵作用,將213位點(diǎn)的絲氨酸突變成無(wú)法被磷酸化的天冬酰胺后,ipa1S213N突變體表現(xiàn)出了冷敏感表型(Jia et al. 2022)。

                IPA1結(jié)合到SNAC1啟動(dòng)子,激活SNAC1表達(dá),從而激活抗氧化系統(tǒng)清除活性氧,正調(diào)控水稻抗旱性。與野生型相比,IPA1敲除植株葉片中H2O2積累更多。IPA1在水稻中組成性表達(dá),受H2O2、脫落酸、NaCl和聚乙二醇6000處理的調(diào)節(jié)(Chen et al. 2023)。

                SPL14/17作用于獨(dú)腳金內(nèi)酯信號(hào)的下游,調(diào)節(jié)硝態(tài)氮營(yíng)養(yǎng)下水稻根系的伸長(zhǎng)。D53與SPL17互作,并抑制SPL17介導(dǎo)的對(duì)PIN1b啟動(dòng)子的轉(zhuǎn)錄激活。SPL14/17PIN1b的突變導(dǎo)致根伸長(zhǎng)反應(yīng)對(duì)NO3-和rac-GR24應(yīng)用不敏感(Sun et al. 2021)。

                【相關(guān)登錄號(hào)】
                contigs及其產(chǎn)物:AP008214BAF24118; AP006049BAD10733; AP005816BAD10674
                cDNAs及其產(chǎn)物:AK107191BAG97990, GU136674ADJ19220
                參考基因組位點(diǎn):Os08g0509600(RAP-DB, PhytoAB公司抗體服務(wù)←→ LOC_Os08g39890(本地、MSU-RGAP, 百格基因突變體服務(wù)←→ LOC4345998(NCBI)
                參考基因組產(chǎn)物:XM_015795327XP_015650813
                uniprot庫(kù)登錄號(hào):B7F043, Q7EXZ2
                ·ONTOLOGY及相關(guān)基因
                表型特征株高(TO:0000207), 根長(zhǎng)度(TO:0000227), 穗長(zhǎng)(TO:0000040), 分蘗數(shù)(TO:0000346), 耐寒性(TO:0000303), 每穗粒數(shù)(TO:0002759), 結(jié)實(shí)率(TO:0000448), 耐旱性(TO:0000276), 抗倒性(TO:0000068), 過(guò)氧化氫含量(TO:0000605), 莖粗(TO:0000339), 千粒重(TO:0000592), 一次枝梗數(shù)(TO:0000547), 單株產(chǎn)量(TO:0000449), 耐鹽性(TO:0006001)
                分子功能DNA轉(zhuǎn)錄因子活性(GO:0003700), 蛋白激酶結(jié)合(GO:0019901)
                生物進(jìn)程穗發(fā)育(GO:0010229), 低溫脅迫應(yīng)答(GO:0009409), 基因表達(dá)調(diào)控(GO:0010468), 缺水脅迫應(yīng)答(GO:0009414), 生長(zhǎng)素應(yīng)答(GO:0009733), 鹽脅迫應(yīng)答(GO:0009651), 生長(zhǎng)素極性運(yùn)輸調(diào)控(GO:2000012), 生長(zhǎng)素穩(wěn)態(tài)維持(GO:0010252), 過(guò)氧化氫分解代謝(GO:0042744), 分蘗形成調(diào)控(GO:2000032), 根發(fā)育調(diào)控(GO:2000280), 獨(dú)腳金內(nèi)酯細(xì)胞應(yīng)答(GO:1902348), 硝酸鹽同化作用調(diào)控(GO:0090352), 抗真菌先天免疫反應(yīng)調(diào)控(GO:1905034), 超氧自由基清除調(diào)控(GO:2000121)
                ·參考文獻(xiàn)
                1Feihe Chen;Haomin Zhang;Hong Li;Ling Lian;Yidong Wei;Yuelong Lin;Lanning Wang;Wei He;Qiuhua Cai;Hongguang Xie;Hua Zhang;Jianfu Zhang
                  IPA1 improves drought tolerance by activating SNAC1 in rice
                  BMC Plant Biology, 2023, 23: 55
                2Meiru Jia;Xiangbing Meng;Xiaoguang Song;Dahan Zhang;Liquan Kou;Junhui Zhang;Yanhui Jing;Guifu Liu;Huihui Liu;Xiahe Huang;Yingchun Wang;Hong Yu;Jiayang Li
                  Chilling-induced phosphorylation of IPA1 by OsSAPK6 activates chilling tolerance responses in rice
                  Cell Discovery, 2022, 8: 71
                3Meiru Jia;Nan Luo;Xiangbing Meng;Xiaoguang Song;Yanhui Jing;Liquan Kou;Guifu Liu;Xiahe Huang;Yingchun Wang;Jiayang Li;Bing Wang;Hong Yu
                  OsMPK4 promotes phosphorylation and degradation of IPA1 in response to salt stress to confer salt tolerance in rice
                  Journal of Genetics and Genomics, 2022, 49(8): 766-775
                4Xiaoguang Song;Xiangbing Meng;Hongyan Guo;Qiao Cheng;Yanhui Jing;Mingjiang Chen;Guifu Liu;Bing Wang;Yonghong Wang;Jiayang Li;Hong Yu
                  Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size
                  Nature Biotechnology, 2022, 40: 1403-1411
                5Yan Li;Yizhou He;Zhixin Liu;Tian Qin;Lei Wang;Zhihui Chen;Biaoming Zhang;Haitao Zhang;Haitao Li;Li Liu;Jian Zhang;Wenya Yuan
                  OsSPL14 acts upstream of OsPIN1b and PILS6b to modulate axillary bud outgrowth by fine-tuning auxin transport in rice
                  The Plant Journal, 2022, 111(4): 1167-1182
                6Lei Wang;Luchang Ming;Keyan Liao;Chunjiao Xia;Shengyuan Sun;Yu Chang;Hongkai Wang;Debao Fu;Conghao Xu;Zhengji Wang;Xu Li;Weibo Xie;Yidan Ouyang;Qinglu Zhang;Xianghua Li;Qinghua Zhang;Jinghua Xiao;Qifa Zhang
                  Bract suppression regulated by the miR156/529-SPLs-NL1-PLA1 module is required for the transition from vegetative to reproductive branching in rice
                  Molecular Plant, 2021, 14(7): 1168-1184
                7Huwei Sun;Xiaoli Guo;Xuejiao Qi;Fan Feng;Xiaonan Xie;Yali Zhang;Quanzhi Zhao
                  SPL14/17 act downstream of strigolactone signalling to modulate rice root elongation in response to nitrate supply
                  The Plant Journal, 2021, 106(3): 649-660
                8Fang Wang;Tongwen Han;Qingxin Song;Wenxue Ye;Xiaoguang Song;Jinfang Chu;Jiayang Li;Z. Jeffrey Chen
                  The Rice Circadian Clock Regulates Tiller Growth and Panicle Development Through Strigolactone Signaling and Sugar Sensing
                  The Plant Cell, 2020, 32(10): 3124-3138
                9Mingming Liu;Zhenying Shi;Xiaohan Zhang;Mingxuan Wang;Lin Zhang;Kezhi Zheng;Jiyun Liu;Xingming Hu;Cuiru Di;Qian Qian;Zuhua He;Dong-Lei Yang
                  Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice
                  Nature Plants, 2019, 5: 389-400
                10Jing Wang;Lian Zhou;Hui Shi;Mawsheng Chern;Hong Yu;Hong Yi;Min He;Junjie Yin;Xiaobo Zhu;Yan Li;Weitao Li;Jiali Liu;Jichun Wang;Xiaoqiong Chen;Hai Qing;Yuping Wang;Guifu Liu;Wenming Wang;Ping Li;Xianjun Wu;Lihuang Zhu;Jian-Min Zhou;Pamela C. Ronald;Shigui Li;Jiayang Li;Xuewei Chen
                  A single transcription factor promotes both yield and immunity in rice
                  Science, 2018, 361: 1026-1028
                11Lin Zhang;Hong Yu;Bin Ma;Guifu Liu;Jianjun Wang;Junmin Wang;Rongcun Gao;Jinjun Li;Jiyun Liu;Jing Xu;Yingying Zhang;Qun Li;Xuehui Huang;Jianlong Xu, Jianming Li, Qian Qian, Bin Han, Zuhua He, Jiayang Li
                  A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice
                  Nature Communications, 2017, 8: 14789
                12Shuansuo Wang;Kun Wu;Qian Qian;Qian Liu;Qi Li;Yajun Pan;Yafeng Ye;Xueying Liu;Jing Wang;Jianqing Zhang;Shan Li;Yuejin Wu;Xiangdong Fu
                  Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield
                  Cell Research, 2017, 27: 1142-1156
                13Xiaoguang Song;Zefu Lu;Hong Yu;Gaoneng Shao;Jinsong Xiong;Xiangbing Meng;Yanhui Jing;Guifu Liu;Guosheng Xiong;Jingbo Duan;Xue-Feng Yao;Chun-Ming Liu;Hongqing Li;Yonghong Wang;Jiayang Li
                  IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice
                  Cell Research, 2017, 27: 1128-1141
                14B.Srikanth;I.Subhakara Rao;K.Surekha;D.Subrahmanyam;S.R.Voleti;C.N.Neeraja
                  Enhanced expression of OsSPL14 gene and its association with yield components in rice (Oryza sativa) under low nitrogen conditions
                  Gene, 2016, 576(1): 441-450
                15Zefu Lu;Hong Yu;Guosheng Xiong;Jing Wang;Yongqing Jiao;Guifu Liu;Yanhui Jing;Xiangbing Meng;Xingming Hu;Qian Qian;Xiangdong Fu;Yonghong Wang;Jiayang Li
                  Genome-Wide Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex Network Regulating Rice Plant Architecture
                  The Plant Cell, 2013, 25(10): 3743-3759
                16Le Luo;Weiqiang Li;Kotaro Miura;Motoyuki Ashikari;Junko Kyozuka
                  Control of Tiller Growth of Rice by OsSPL14 and Strigolactones, Which Work in Two Independent Pathways
                  Plant and Cell Physiology, 2012, 53(10): 1793-1801
                17Yongqing Jiao;Yonghong Wang;Dawei Xue;Jing Wang;Meixian Yan;Guifu Liu;Guojun Dong;Dali Zeng;Zefu Lu;Xudong Zhu;Qian Qian;Jiayang Li
                  Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice
                  Nature Genetics, 2010, 42(6): 541-544
                18Kotaro Miura;Mayuko Ikeda;Atsushi Matsubara;Xian-Jun Song;Midori Ito;Kenji Asano;Makoto Matsuoka;Hidemi Kitano;Motoyuki Ashikari
                  OsSPL14 promotes panicle branching and higher grain productivity in rice
                  Nature Genetics, 2010, 42(6): 545-549
                19Nathan Springer
                  Shaping a better rice plant
                  Nature Genetics, 2010, 42(6): 475-476
                中國(guó)水稻研究所
                Copyright © CNRRI. All rights reserved. 中國(guó)水稻研究所 版權(quán)所有
                国产免费AV大片大片在线播,日韩精品久久无码二区,国产精品视频一区二区三区四,色婷婷久久综合中文久久一本