·常規(guī)信息  最近更新:2024年9月3日 3:45:00
                基因(座)名稱異三聚體G蛋白α亞基; 矮稈基因
                G protein alpha subunit; heterotrimeric G protein α subunit; Gα subunit; daikoku dwarf; dwarf-1; dwarf 89
                基因符號(hào)D1; RGA1; D89
                所在染色體5 (已克隆)

                RGA1(D38232, Ishikawa et al. 1995), d-1(AB026176/AB026177/AB026178/AB026179/AB026180, Fujisawa et al. 1999), D1(AB028602/AB028603, Ashikari et al. 1999), D89(LOC_Os05g26890, Yang et al. 2014), 位于同一基因位點(diǎn)...

                【突變體表型】

                D1 控制水稻的株高,該位點(diǎn)的隱性突變導(dǎo)致水稻的矮化,并伴有其它性狀,如:莖稈增粗;葉片短且寬,葉色暗綠;穗形直立,著粒緊密,谷粒小而圓;節(jié)間密集,有時(shí)第二節(jié)間不伸長。d1 矮稈突變體對(duì)外源赤霉素刺激不敏感,即外源赤霉素不能誘導(dǎo)其株高恢復(fù)正常。造成d1 突變體矮稈的原因是節(jié)間的細(xì)胞分裂受到抑制。

                與野生型相比,d1葉片表現(xiàn)出較低的葉溫和較高的光化學(xué)反射指數(shù),表明避光性增加且采光更有效。相同光強(qiáng)度下實(shí)驗(yàn)時(shí),d1相比野生型表現(xiàn)出更強(qiáng)的能力來消除多余的輻照度,非光化學(xué)猝滅增加。d1中避光和光保護(hù)能力增加,減少了持續(xù)的光抑制損傷,正如更高的Fv/Fm所揭示(Ferrero-Serrano et al. 2018)。

                RGA1突變體d1對(duì)干旱脅迫的敏感性降低,干旱處理14天后,d1葉片仍為暗綠色且直立,而野生型葉片黃化并萎蔫。d1表現(xiàn)出更高的氣孔導(dǎo)度和對(duì)光合作用更低的氣孔限制,但是蒸騰水分散失與野生型相似,這可以通過野生型葉片溫度更高來解釋(Ferrero-Serrano et al. 2016)。

                突變體d1對(duì)稻瘟病菌無毒小種的侵染表現(xiàn)出超敏反應(yīng)大幅下降。相比野生型,感染稻瘟病的突變體葉片中病程相關(guān)基因(PR)表達(dá)的激活延遲了24小時(shí)。d1細(xì)胞培養(yǎng)中,鞘脂激發(fā)子誘導(dǎo)的H2O2產(chǎn)生和PR基因表達(dá)受到強(qiáng)烈抑制。稻瘟病無毒小種或鞘脂激發(fā)子處理水稻葉面,能誘導(dǎo)Gα mRNA表達(dá)。組成型激活d1突變體中OsRac1的表達(dá),恢復(fù)了依賴鞘脂激發(fā)子的防衛(wèi)信號(hào)和對(duì)稻瘟病的抗性。這些結(jié)果表明,D1在水稻R基因介導(dǎo)的抗病性中起作用,位于小GTP酶Rac的上游(Suharsono et al. 2002)。

                【定位與克隆】

                野生型水稻D1 位點(diǎn)編碼GTP 結(jié)合蛋白(G蛋白)的α 亞基,而在d1 突變體HO541 中,該位點(diǎn)上有833bp的缺失,從而造成G蛋白失活。研究同時(shí)發(fā)現(xiàn),d1 突變體在轉(zhuǎn)入G 蛋白基因后能恢復(fù)其株高至正常。由于d1 對(duì)外源GA 不敏感,據(jù)此推論G蛋白可能與GA信號(hào)傳導(dǎo)相關(guān)。

                【生物學(xué)功能】

                正常水稻植株在轉(zhuǎn)入異三聚體G蛋白α亞基的反義cDNA后,因內(nèi)源性α亞基mRNA受抑制,表現(xiàn)出類似d1 的表型。此外,還發(fā)現(xiàn)造成d1 矮稈的原因是節(jié)間細(xì)胞分裂減少,而不是細(xì)胞長度縮短(Fujisawa et al. 1999)。

                水稻中存在2條GA信號(hào)通路,一條依賴G蛋白,一條不依賴G蛋白,而d1 影響的是依賴G蛋白的GA信號(hào)傳導(dǎo)。依賴G蛋白的途徑對(duì)低濃度GA敏感,與細(xì)胞分裂的數(shù)目、節(jié)間伸長和糊粉層依賴GA誘導(dǎo)的α-淀粉酶有關(guān);而不依賴G蛋白的途徑則對(duì)高濃度GA敏感,主要控制葉鞘伸長(Ueguchi-Tanaka et al. 2000)。

                Wang等的研究表明d1降低了對(duì)24-表油菜素內(nèi)酯的敏感性,與油菜素內(nèi)酯(BR)的信號(hào)傳導(dǎo)也有關(guān)系。

                RGA1調(diào)控水稻營養(yǎng)階段的耐旱性(Ferrero-Serrano et al. 2016),且是水稻避光和光保護(hù)機(jī)制的調(diào)節(jié)因子(Ferrero-Serrano et al. 2018)。

                水稻中3個(gè)G蛋白γ亞基GS3、DEP1GGC2,因蛋白C端結(jié)構(gòu)域變異導(dǎo)致其功能分化。DEP1GGC2的C端結(jié)構(gòu)域介導(dǎo)G蛋白信號(hào)傳導(dǎo),其功能發(fā)揮依賴G蛋白β亞基RGB1和α亞基RGA1,它們對(duì)籽長的調(diào)節(jié)作用是加性的。GS3本身對(duì)籽粒大小無影響,但它與DEP1GGC2競(jìng)爭性結(jié)合Gβ,縮短粒長(Sun et al. 2018)。

                RGA1通過改善糖和能量的代謝與分配,減輕弱光對(duì)水稻花粉管伸長的抑制。RGA1過表達(dá)株系中,酸性轉(zhuǎn)化酶(INV)、蔗糖合酶(SUS)和線粒體呼吸電子轉(zhuǎn)運(yùn)鏈復(fù)合物的活性,以及蔗糖轉(zhuǎn)運(yùn)蛋白基因SUTs、糖運(yùn)出蛋白基因SWEETsSUSs、INVsCINsSnRK1ASnRK1B的相對(duì)表達(dá)水平增加。此外,弱光下,ATP和ATP酶的含量顯著增加,而在d1突變體中下降(Li et al. 2023)。

                【相關(guān)登錄號(hào)】
                contigs及其產(chǎn)物:AP014961BAS93442
                基因及產(chǎn)物ID號(hào):FJ196698ACN93980, AB028602, AB028603
                cDNAs及其產(chǎn)物:D38232BAA07405, AB026176, AB026177, AB026178, AB026179, AB026180
                參考基因組位點(diǎn):Os05g0333200(RAP-DB, PhytoAB公司抗體服務(wù)←→ LOC_Os05g26890(本地MSU-RGAP, 百格基因突變體服務(wù)←→ LOC4338448(NCBI)
                參考基因組產(chǎn)物:XM_015783697XP_015639183, XM_015783698XP_015639184
                uniprot庫登錄號(hào):Q0DJ33, A0A0P0WKZ0
                ·ONTOLOGY及相關(guān)基因
                表型特征稻瘟病抗性(TO:0000074), 氣孔導(dǎo)度(TO:0000522), 葉片色(TO:0000299), 節(jié)間長度(TO:0000145), 葉寬(TO:0000370), 葉長(TO:0000135), 籽粒大小(TO:0000397), 紅光敏感性(TO:0000158), 赤霉素敏感性(TO:0000166), 耐旱性(TO:0000276), 過氧化氫含量(TO:0000605), 莖壁厚度(TO:0000339), 千粒脫殼谷粒重(TO:0000592), 穗密度(TO:0020001), 非光化學(xué)猝滅(TO:0020117), 光強(qiáng)敏感性(TO:0000460), 葉溫(TO:0000504)
                分子功能鳥苷三磷酸結(jié)合(GO:0005525), GTP酶活性(GO:0003924)
                生物進(jìn)程穗發(fā)育(GO:0010229), 細(xì)胞分裂的正向調(diào)節(jié)(GO:0051781), 赤霉素應(yīng)答(GO:0009739), 依賴G蛋白的赤霉素信號(hào)傳導(dǎo)(GO:0042388), G蛋白耦聯(lián)受體信號(hào)傳導(dǎo)途徑(GO:0007186), 細(xì)胞周期(GO:0007049), 活性氧代謝調(diào)控(GO:2000377), 節(jié)間發(fā)育模式建成(GO:0080006), 光保護(hù)(GO:0010117), 細(xì)胞增殖調(diào)控(GO:0042127), 種子發(fā)育調(diào)控(GO:0080050), 氣孔運(yùn)動(dòng)調(diào)節(jié)(GO:0010119), 非光化學(xué)猝滅(GO:0010196), 植物超敏反應(yīng)調(diào)控(GO:0010363), 抗真菌先天免疫反應(yīng)(GO:0061760), 效應(yīng)子觸發(fā)的植物免疫反應(yīng)(GO:0080185), 弱光應(yīng)答(GO:0009645)
                細(xì)胞結(jié)構(gòu)異源三聚體G蛋白(GO:0005834)
                ·參考文獻(xiàn)
                1Hubo Li;Baohua Feng;Juncai Li;Weimeng Fu;Wenting Wang;Tingting Chen;Lianmeng Liu;Zhihai Wu;Shaobing Peng;Longxing Tao;Guanfu Fu
                  RGA1 alleviates low-light-repressed pollen tube elongation by improving the metabolism and allocation of sugars and energy
                  Plant, Cell & Environment, 2023, 
                2Akshaya Kumar Biswal;Evan Wesley McConnell;Emily Grace Werth;Shuen-Fang Lo;Su-May Yu;Leslie M. Hicks;Alan M. Jones
                  The Nucleotide-Dependent Interactome of Rice Heterotrimeric G-Protein α -Subunit
                  Proteomics, 2019, 19(9): 1800385
                3Shengyuan Sun;Lei Wang;Hailiang Mao;Lin Shao;Xianghua Li;Jinghua Xiao;Yidan Ouyang;Qifa Zhang
                  A G-protein pathway determines grain size in rice
                  Nature Communications, 2018, 9: 851
                4ángel Ferrero‐Serrano;Zhao Su;Sarah M. Assmann
                  Illuminating the role of the Gα heterotrimeric G protein subunit, RGA1, in regulating photoprotection and photoavoidance in rice
                  Plant, Cell & Environment, 2018, 41(2): 451-468
                5Annie P. Jangam;Ravi R. Pathak;Nandula Raghuram
                  Microarray Analysis of Rice d1 (RGA1) Mutant Reveals the Potential Role of G-Protein Alpha Subunit in Regulating Multiple Abiotic Stresses Such as Drought, Salinity, Heat, and Cold
                  Frontiers in Plant Science, 2016, 7: 11
                6ángel Ferrero-Serrano;Sarah M. Assmann
                  The α-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1
                  Journal of Experimental Botany, 2016, 67(11): 3433-3443
                7Hongying Sun;Qian Qian;Kun Wu;Jijing Luo;Shuansuo Wang;Chengwei Zhang;Yanfei Ma;Qian Liu;Xianzhong Huang;Qingbo Yuan;Ruixi Han;Meng Zhao;Guojun Dong;Longbiao Guo;Xudong Zhu;Zhiheng Gou;Wen Wang;Yuejin Wu;Hongxuan Lin;Xiangdong Fu
                  Heterotrimeric G proteins regulate nitrogen-use efficiency in rice
                  Nature Genetics, 2014, 46(4): 652-656
                8De-wei Yang;Xiang-hua Zheng;Chao-ping Cheng;Wen-da Wang;Deng-hui Xing;Li-bin Lu;Chen-de Liu;Ning Ye;Mei-juan Zeng;Xin-fu Ye
                  A dwarfing mutant caused by deactivation function of alpha subunit of the heterotrimeric G-protein in rice
                  Euphytica, 2014, 197(1): 145-159
                9Yuki Izawa;Yoshiyuki Takayanagi;Noriko Inaba;Yuki Abe;Miho Minami;Yukiko Fujisawa;Hisaharu Kato;Shizuka Ohki;Hidemi Kitano;Yukimoto Iwasaki
                  Function and Expression Pattern of the α Subunit of the Heterotrimeric G Protein in Rice
                  Plant and Cell Physiology, 2010, 51(2): 271-281
                10Kotaro Miura;Masakazu Agetsuma;Hidemi Kitano;Atsushi Yoshimura;Makoto Matsuoka;Steven E. Jacobsen;Motoyuki Ashikari
                  A metastable DWARF1 epigenetic mutant affecting plant stature in rice
                  Proceedings of the National Academy of Sciences, 2009, 106(27): 11218-11223
                11Lei Wang;Yun-Yuan Xu;Qi-Bin Ma;Dan Li;Zhi-Hong Xu;Kang Chong
                  Heterotrimeric G protein α subunit is involved in rice brassinosteroid response
                  Cell Research, 2006, 16(12): 916-922
                12Utut Suharsono;Yukiko Fujisawa;Tsutomu Kawasaki;Yukimoto Iwasaki;Hikaru Satoh;Ko Shimamoto
                  The heterotrimeric G protein α subunit acts upstream of the small GTPase Rac in disease resistance of rice
                  Proceedings of the National Academy of Sciences, 2002, 99(20): 13307-13312
                13Miyako Ueguchi-Tanaka;Yukiko Fujisawa;Masatomo Kobayashi;Motoyuki Ashikari;Yukimoto Iwasaki;Hidemi Kitano;Makoto Matsuoka
                  Rice dwarf mutant d1, which is defective in the α subunit of the heterotrimeric G protein, affects gibberellin signal transduction
                  Proceedings of the National Academy of Sciences, 2000, 97(21): 11638-11643
                14Motoyuki Ashikari;Jianzhong Wu;Masahiro Yano;Takuji Sasaki;Atsushi Yoshimura
                  Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein
                  Proceedings of the National Academy of Sciences, 1999, 96(18): 10284-10289
                15Yukiko Fujisawa;Teruhisa Kato;Shizuka Ohki;Atsushi Ishikawa;Hidemi Kitano;Takuji Sasaki;Tadashi Asahi;Yukimoto Iwasaki
                  Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice
                  Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(13): 7575-7580
                16Atsushi Ishikawa;Hitoshi Tsubouchi;Yukimoto Iwasaki;Tadashi Asahi
                  Molecular Cloning and Characterization of a cDNA for the α Subunit of a G Protein from Rice
                  Plant and Cell Physiology, 1995, 36(2): 353-359
                17Hak-Soo Seo;Ho-Yeon Kim;Jin-Yong Jeong;Sang-Yeol Lee;Moo-Je Cho;Jeong-Dong Bahk
                  Molecular cloning and characterization of RGA1 encoding a G protein α subunit from rice (Oryza sativa L. IR-36)
                  Plant Molecular Biology, 1995, 27(6): 1119-1131
                中國水稻研究所
                Copyright © CNRRI. All rights reserved. 中國水稻研究所 版權(quán)所有
                国产免费AV大片大片在线播,日韩精品久久无码二区,国产精品视频一区二区三区四,色婷婷久久综合中文久久一本