Evolutionary History of GS3, a Gene Conferring Grain Length in Rice

                3.889
                Noriko Takano-Kai, Hui Jiang, Takahiko Kubo, Megan Sweeney, Takashi Matsumoto, Hiroyuki Kanamori, Badri Padhukasahasram, Carlos Bustamante, Atsushi Yoshimura, Kazuyuki Doi, Susan McCouch
                Genetics, 2009, 182(4): 1323-1334     追溯原文......本站官方QQ群:62473826

                Unlike maize and wheat, where artificial selection is associated with an almost uniform increase in seed or grain size, domesticated rice exhibits dramatic phenotypic diversity for grain size and shape. Here we clone and characterize GS3, an evolutionarily important gene controlling grain size in rice. We show that GS3 is highly expressed in young panicles in both short- and long-grained varieties but is not expressed in leaves or panicles after flowering, and we use genetic transformation to demonstrate that the dominant allele for short grain complements the long-grain phenotype. An association study revealed that a C to A mutation in the second exon of GS3 (A allele) was associated with enhanced grain length in Oryza sativa but was absent from other Oryza species. Linkage disequilibrium (LD) was elevated and there was a 95.7% reduction in nucleotide diversity ({theta}{pi}) across the gene in accessions carrying the A allele, suggesting positive selection for long grain. Haplotype analysis traced the origin of the long-grain allele to a Japonica-like ancestor and demonstrated introgression into the Indica gene pool. This study indicates a critical role for GS3 in defining the seed morphologies of modern subpopulations of O. sativa and enhances the potential for genetic manipulation of grain size in rice.


                基因列表
                  異三聚體G蛋白γ亞基; 粒長粒重主效控制基因; 耐熱性; 花柱長度 GS3; TT2; OsSYL3
                国产免费AV大片大片在线播,日韩精品久久无码二区,国产精品视频一区二区三区四,色婷婷久久综合中文久久一本